
Educational Materials

AD-A264 273 CMUS,-93

Materials for Teaching Software
Inspections

James E. Tomayko , T I
James S. Murphy

February 1993
1 1 _j

3- X6

S• •:•93-10675
9 3 5 1• i• •. ll~l~ll~l!!lif~iiliilliil~llllllU

Educational Materials
CMU/SEI-93-EM-7

February 1993

Materials for Teaching
Software Inspections

James E. Tomayko
SEI MSE Project

James S. Murphy
School of Computer Science

Carnegie Mellon University

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESC/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and Is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

The Software Engineering Institute Is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright 0 1993 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer ofscientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S Governmentagency personnel and their oontractors. To obtain a copy, please contact OTIC direcly: Defense Technical Informaton
Center, Atm: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also availat•e rough the National Technical Informatin Service. For information on ordering.
please contact NTIS directly: NationaJ Technical Information Service, U.S. Department of Commerce. Springfield, VA 22161.
Copies of this document are also available from Research Access, Inc., 3400 Forbes Avenue, Suite 302, Pittsburgh, PA 15213

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

. Table of Contents

1. Preface iii

2. Software Inspections: History, Technique, and Results 1

2.1 The Formal Inspection Process 2

2.2 Pitfalls of Inspections 2

2.3 Results of Inspections 2

3. Using the Materials 5

Annotated Bibliography 7

Acces31on For

CMU/SEI-93-EM-7

11 CMU/S EI-93- EM-7

Preface

This educational materials package was developed for instructors of software
verification techniques in graduate and undergraduate software engineering courses,
and for those who teach industrial continuing education courses on the meaning and
methods of software inspections.

Software inspections are a low-tech, highly effective verification technique. Research
has consistently shown that the defect detection rate of inspections is higher than that
of many traditional testing techniques. This package includes materials for
demonstrating how to perform an inspection and also for "selling" students on the
effectiveness of inspections. It complements EM-5, Scenes from Software Inspections,
providing additional background material and exercises for using that set of educational
materials,

Materials for Teaching Software Inspections contains the following:

1. Introductory essay on the history and results of software inspections

2. Annotated bibliography

3. Teaching suggestions for the instructor

4. Inspection materials: code, report forms, and actual results

5. Video: Software Inspections: Utility or Futility, a report on inspection results on
an actual project

6. Video: Candid Inspection, which shows portions of an actual inspection

Note: Both videos are on the same tape cartridge, separated by titles. The inspection
materials and videos (items 4, 5, and 6) can be ordered from the SEI. An order
form is provided at the end of this document.

CMU/SEI-93-EM-7

iv CMU/SEI-93-EM-7

Software Inspections: History, Technique, and
Results

Inspections are one of the most effective, yet lowest technology, quality assurance
techniques that can be applied to software development at all stages of the life cycle. In
conventional manufacturing, inspections by quality assurance specialists are an
accepted practice. These inspections take place at selected points on an assembly line
and are used to certify that parts and assemblies are correctly built to the specifications.
Even with the advent of advanced tools such as X-ray and sonic devices coupled to
expert systems, the most common form of inspection remains a human being making an
experienced judgment.

Michael E. Fagan of IBM is credited with introducing the use of inspections in software
development. Though many programmers use informal peer reviews of their code,
Fagan made the formal inspection an integral part of the development process [Fagan
761. Inspections have the obvious benefit of locating errors in code or other
documentation. Fagan also viewed them as a contributor to disciplined development. By
requiring inspections at various points in the development life cycle, software engineers
not only improved the quality of the work products involved but also gained valuable
data on defect injection and resolution.

The completeness of a software product is most often determined by testing. Inspections
can also contribute to the determination of when a product is ready for shipment. In
Fagan's original data, design and code inspections located 82 percent of all errors in a
specific product. Acceptance test and actual use by a customer for six months revealed
zero defects.

Inspections are used to inculcate quality throughout the development process, not just
at the implementation stage. Even though most of the examples and data given in the
literature refer to code inspections, successful project teams use inspections for all
deliverables, including requirements and design documentation, as well as user
manuals. Following the principle that the earlier a defect is found, the easier and
cheaper it is to fix, the utility of inspections for work products other than code is
apparent.

If an organization maintains records of inspection results and the results of all other
defect identification methods, it can determine the average percentage of errors located
and thus indicate when a product is ready to move on to the next step in development.

CMU/SEI-93-EM-7 I

The Formal Inspection Process

Inspections are a team activity. Most inspections can be accomplished by four people:
the producer of the item to be inspected (such as code, design, or user manual), a
moderator to facilitate the process, and two technically competent inspectors. One
person also acts as a recorder. The inspection is preceded by a period of preparation by
each member of the group. Except for the moderator sometimes, team members usually
need at least an hour to prepare. The inspection itself is usually limited to two hours
because longer durations tend to reduce the efficiency of the team. After the inspection
meeting is a follow-up period, beginning with a report and ending with the closure of
open items such as the disposition of major defects.

Preparation includes two possible activities: a group overview and solo study. The first
time an inspection team has to deal with the components of a particular product, a lead
designer or someone with similar knowledge of the software product gives an overview
of the requirements and design. Each inspector spends time individually studying the
document or code prior to its inspection.

The inspection meeting begins with team members reporting the time each spent in
preparation, a valuable metric. Then one of the inspectors acts as a reader, going
through the code or design one line or item at a time. Each member of the team has an
opportunity to ask for clarification or point out a defect in the current item. The recorder
writes down the defects, which are later classified as "minor" or "major" (a minor defect
could be a syntax error such as a missing semicolon in code; a major defect could be a
failure to implement a requirement either through logic error or omission).

After the inspection is completed, the recorder prepares a report listing metrics such as
preparation time, elapsed time of the inspection meeting itself, and the major and minor
defects (sample report forms are in [Fagan 76]. The minor defects are usually turned
over to the original producer of the inspected material for rectification. The major
defects may require the attention of the configuration control board or other change
control mechanism. Defect repair is accompanied by any necessary changes to
documentation prior to closure. Records of defect type and location in the product can be
used for causal analysis and continuous process improvement.

Pitfalls of Inspections

One of the greatest dangers of inspections is the inability of producers and inspectors to
differentiate the product from the person creating the product. Software engineers are
sometimes embarrassed by the inspection process when their carelessness or bad
judgment is revealed in a "public" setting. When a particular product has many errors,
inspectors may sometimes get caught up in a "feeding frenzy," attacking the producer.
The moderator is charged with the responsibility of keeping the inspection focused on
the product and also maintaining a professional tone during the meeting. Under no
circumstances should the results of inspections be used as part of performance
appraisals.

2 CMU/SEI-93-EM-7

Another pitfall is attempting to use inspections without adequately budgeting time for
preparation and follow-up. Insufficient preparation reduces the number of lines or items
that can be inspected in a particular meeting because time is spent in trying to
understand the code. Insufficient follow-up often means that defects remain, defects
that may not be found by later testing. Since the results of the inspections in locating
defects are so outstanding, it is much cheaper to spend time at these early stages in
product development than to find and repair defects later.

Results of Inspections

The results of using formal inspections are most marked in the decreasing cost of
rework and in the side effect of improving individual software engineering skills.
Fagan's early data indicated that 82 percent of all errors in applications software
development could be found with inspections. A later report of a 6,000-line business
application indicates that inspections found 93 percent of all defects [Ackerman 891.
Since inspections can be conducted even prior to unit testing, they are inexpensive
compared to finding errors in integration or acceptance testing phases. The Jet
Propulsion Laboratory estimates it saves $25,000 in each inspection [Bush 901.
However, the process does not lend itself to saving more money through acceleration:
Russell reports that defects found per thousand lines of code dropped from 50 to 15
when the pace of inspections increased from 150 to 450 lines per hour [Russell 911.
Finally, although it has not been quantified, software engineers report that their own
programming skills improve as a result of participating in inspections. This is not so0 surprising since people are taught to be better writers by reading good writing and by
receiving critiques. The same principle can apply to programming.

CMU/SEI-93-EM-7 3

4 ~CMU/SEI -93-EM -7

Using the Materials

This educational materials package, Logether with EM-5, Scenes from Software

Inspections, provides the instructor with a variety of materials to use in teaching the
techniques of software inspection.

In a recent course on software verification techniques, the authors used the following
assignment and activity sequence:

1. Read [Fagan76], [Ackerman89], and [Russell9l], and view the video Software
Inspections: Utility or Futility. Then write an essay on the following: What are the
potential advantages and disadvantages of inspection technology in your personal
software development field? In what ways can advances in information technology
be utilized to improve the inspections process?

2. Attend software inspections training, which uses the Scenes from Software
Inspections video and the Candid Inspection video as a basis for demonstration and
discussion.

3. Participate in an inspection, including all preparation and follow-up work.

4. Write an individual evaluation of the inspection you participated in, commenting
on its effectiveness at defect identification and on its process.

Attachment A contains the design o-'erview, code, and sample results of the
assignments specified here so that instructors can see what might be expected from
students who do these assignments. Attachment E is the hard-copy version of the slides
from the Software Inspections: Utility or Futility videotape, and Exhibit F is the design
overview and code inspected in Candid Inspection.

Another sequence of assignments and activitieb in a course with a lab component could
be the following:

1. The instructor lectures on the origins of inspections and their effectiveness.
Students prepare by reading [Fagan76l, and [Russell9l] prior to attending the
lecture; the instructor uses Software Inspections: Utility or Futility during the
lecture as additionsl material.

2. The instructor lectures on how to conduct an inspection, reviewing the roles and
method. Scenes from Software Inspections and Candid Inspection are used as

examples.

CMI/SEV-93-EM-7 5

3. Students are split into teams and conduct an inspection during a laboratory
period. The instructor, hopefully with some help, listens in to the inspection teams
to ensure that they are performing the inspection correctly.

4. Attachments C and D contain design documentation, pre-inspected code,
inspection reports, and post-inspection code for two different modules of software
that is being used in a robot to maintain the Space Shuttle thermal protection
system. Either of these may be used for the exercise. Instructors should distribute
Attachment B, which contains the coding standards (violations of coding
standards are considered defects) and system header files for the example
modules, along with one of the pre-inspected code l;stings.

5. After the inspection, distribute the report and resulting repaired code to compare
with the results of the in-class inspection. Alternatively, one of the complete
exhibits could be used for ,n in-class walkthrough and the other for an actual
inspection.

6 CMU/SEI-93-EM-7

Annotated Bibliography

[Ackerman 89] Ackerman, Frank A.; Buchwald, Lynne S.; and Lewski, Frank H.
"Software Inspections: An Effective Verification Process." IEEE
Software (May 1989): 31-36.

The authors recount experiences with inspections at AT&T. The article
contains a useful chart of a requirements inspection checklist. The
section on experiences is a good survey of industry practice and results.

[Bush 90] Bush, Marilyn. "Improving Software Quality: The Use of Formal
Inspections at the Jet Propulsion Laboratory," 196-198. Proceedings
of the 12th International Conference on Software Engineering, IEEE
Computer Society Press, 1990.

A "work in progress"paper describing the Jet Propulsion Laboratory's
initial uses of software inspections.

(Fagan 761 Fagan, Michael E. "Design and Code Inspections to Reduce Errors in
Program Development." IBM Systems Journal 15, 3 (1976): 182-211.

The original paper describing the software inspection technique. Fagan
gives detailed specifications for the roles of participants in an
inspection and the content of reports. He also gives an overview of early
results of the use of inspections in IBM. His emphasis in the paper is
how inspections are just a part of the overall process control of the
development of software.

[Fagan 861 Fagan, Michael E. "Advances with Inspections." IEEE Transactions
on Software Engineering (July 1986): 744-751.

This paper is more a ten-year update than a report on spectacular
advances. Fagan has considerably more results to survey.

[Russell 911 Russell, G. W. "Experience with Inspection in Ultralarge-Scale
Developments." IEEE Software (January 1991): 25-31.

This paper is an exceptionally good report of results on large projects.
Russell does a data analysis that reveals such metrics as the rate of
defect detection as a function of the speed at which an inspection is
conducted. A very convincing case for the use of inspections on big
projects.

CMU/SEI-93-EM-7 7

8 CMU/SEI-93-EM-7

CMU/SEI-93-EM-7

Carnegie Mellon University
Software Engineering Institute

Materials and Videotape for Teaching Software
Inspections Order Form

Copies of the videotape, Formal Inspections: Utility or Futility and Candid Inspection, and materials,
Materials for Teaching Software Inspections, are available from the Software Engineering Institute.
The cost to U.S. Government agencies and to colleges or universities within the United States is
$35.00 for each NTSC format tape ordered. The cost to all others is $70.00. Orders should be
addressed to:

Education Program
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Checks may be made payable to Carnegie Mellon University and should accompany this order

form. Please indicate W additional copies of the report are also needed.

Videotape Format

Please send copies of each tape.

O1 NTSC VHS - U.S. Universities and U.S. Gov't Agencies $35.00

o3 NTSC VHS - All Others $70.00

O PALVHS $100,00

Materials

Please send copies of each report,

[3 Materials for Teaching Software Inspections $25.00

Amount enclosed

Send to

Name

Title

School/Company

Address

City/State/Zip

Telephone

e-mail

LUNLIMED, UNCLASSMIED
SEClURITY CLASSW'ICAlION OF TICS PACE

REPORT DOCUMENTATION PAGE
i, REPORT SECURrrY CLASSIFICATION I b, RESTRICITVI. MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISI •1UBUON/AVAI[A•IIIY OF RVPOKI

N/A Approved for Public Release
2b. DECLASSIFICATIONADOWNGRADLNG SCIIEDUL•X-E Distribution Unlimited

N/A
4. PERFORMING ORGANliATI1ON REPORT NUMBER(S) 5 MO,\TrORING ORGANI'AIION REi'ORI Nt;MII,.WRtSý

CMU/SEI-93-EM-7

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGA NI.IION

Software Engineering Institute (anplicable) SEI Joint Program Office
SEI

6c. ADDRESS (city, state, and 22p code) 7b. ADDRESS (city. ftle, and rup code)

Carnegie Mellon University ESC/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

ga, NAME OFFUNDENGISPONSORING 8b. OFFICE SYMBOL 9, PROCU'REMFI.T IN STRUME'N.T IDF,'.In FICATION NU IEB:R

ORGANIZATION (irapplicable) F1962890C0003
SEI Joint Program Office ESC/AVS

8c. ADDRESS (city, state, and zip code)) 10. SOURCE OF FUNDING NOS

Carnegie Mellon University PROGRAM PROJECT IASK AOORK 'NII
Pittsburgh PA 15213 ELE•ENT NO N/O AO N

11. TITLE (Include Security Classification)

Materials for Teaching Software Inspections

12. PERSONAL ATUTOR(S)

James E. Tomayko and James S. Murphy

13a. TYPE OF REPORT l3b. TIME COVERED J 14. DATE OF REPORT (year, month, day) 15 PAGE CO.,'N'

Final FROM TO February 1993 8 pp.
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 1_ . SUBJECT TERMS (continue on reveare of necessary and identify by block number)

FIELD GROUP SUB. GI& metrics software processing

quality assurance software verification

software inspection

19. ABSTRAC? (continue on reverse if necessary and identify by block number)

Abstract: This educational materials package was developed for instructors of software verification techniques in grad-
uate and undergraduate software engineering courses, and for those who teach industrial continuing education
courses on the meaning and methods of software inspections.

Software inspections are a low-tech, highly effective verification technique. Research has consistently shown that the
defect detection rate of inspections is higher than that of many traditional testing techniques. This package includes
materials for demonstrating how to perform an inspection and also for "selling": students on the effectiveness of inspec-
tions. It complements EM-5, "Scenes from Software Inspections," providing additional background material and exer-
cises for using that set of educational materials.

(please t m

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SEC-URITY CIASSIIMCAIION

UNCLASSIIED/UNLIMTTED @ SAME AS Rn[DTIC USERS I Unclassified, Unlimited Distribution

22a NAME OF RESPONSIBLF INDIVIDUAI, 22b. 1t1I11P1ION. NUMBIER bru ludc area c,xfel 21cJ ,IFI1(Tk SY -tj :I

Thomas R. Miller, Lt Col, USAF (412) 268-7631 ESC/AVS (SEI)

DI) FORM 1473.%3 APR FITlON nf I]AN 713 IS)131,01 Fl I \11\1 r I'). 1 -N(AVi , ,, I)
SW|(R[IJN (I ANNIFf f1 \(H Il

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.

The SEt Graduate Curriculum Project is developing a wide range of materials to support software engineering education,
A curriculum module (CM) identifies and outlines the content of a specific topic area, and is intended to be used by an
instructor in designing a course. A support materials package (SM) contains materials related to a module that may be
helpful in teaching a course. An educational materials package (EM) contains other materials not necessarily related to a
curriculum module. Other publications include software engineering curriculum recommendations and course designs.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

Permission to make copies or derivative works of SEI curriculum modules, support materials, and educational materials
listed below is granted, without fee, provided that the copies and derivative works are not made or distributed for direct
commercial advantage, and that all copies and derivative works cite the original document by title, author's name, and
document number and give notice that the copying is by permission of Carnegie Mellon University.

Comments on SEI educational materials and requests for additional information should be addressed to SEI Products,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213. Electronic mail can be sent
to education@sei.cmu.edu on the Internet.

Curriculum Modules (* Support Materials available) Educational Materials

CM-i [superseded by CM-191 EM-1 Software Maintenance Exercises for a Software
CM-2 Introduction to Software Design Engineering Project Course
CM-3 The Software Technical Review Process* EM-2 APSE Interactive Monitor: An Artifact for Software
CM-4 Software Configuration Management* Engineering Education
CM-5 Information Protection EM-3 Reading Computer Programs: Instructor's Guide and
CM-6 Software Safety Exercises
CM-6Assur f Software fEM-4 A Software Engineering Project Course with a RealCM-7 Assurance of Software Ouality Client
CM-8 Formal Specification of Software* EM-5 Scenes of Software Inspections: Video Dramatizations
CM-9 Unit Analysis and Testing for the Classroom
CM-o0 Models of Software Evolution: Life Cycle and Process EM-6 Materials to Support Teaching a Project-Intensive
CM-11 Software Specifications: A Framework Introduction to Software Engineering
CM-12 Software Metrics EM-7 Materials for Teaching Software Inspections
CM-13 Introduction to Software Verification and Validation EM-8 Lecture Notes on Software Process Improvement
CM-14 Intellectual Property Protection for Software
CM-15 (no longer available]
CM-16 Software Development Using VDM
CM-17 User Interface Developmenr
CM-18 (superseded by CM-231
CM-19 Software Requirements
CM-20 Formal Verification of Programs
CM-21 Software Project Management
CM-22 Software Design Methods for Real-Time Systems
CM-23 Technical Writing for Software Engineers
CM-24 Concepts of Concurrent Programming
CM-25 Language and System Support for Concurrent

Programming*
CM-26 Understanding Program Dependencies
CM-27 Formal Specification and Verification of Concurrent

Programs

0

